294 research outputs found

    Joule-Heated Molten Regolith Electrolysis Reactor Concepts for Oxygen and Metals Production on the Moon and Mars

    Get PDF
    The technology of direct electrolysis of molten lunar regolith to produce oxygen and molten metal alloys has progressed greatly in the last few years. The development of long-lasting inert anodes and cathode designs as well as techniques for the removal of molten products from the reactor has been demonstrated. The containment of chemically aggressive oxide and metal melts is very difficult at the operating temperatures ca. 1600 C. Containing the molten oxides in a regolith shell can solve this technical issue and can be achieved by designing a Joule-heated (sometimes called 'self-heating') reactor in which the electrolytic currents generate enough Joule heat to create a molten bath. Solutions obtained by multiphysics modeling allow the identification of the critical dimensions of concept reactors

    Standard Lunar Regolith Simulants for Space Resource Utilization Technologies Development: Effects of Materials Choices

    Get PDF
    As NASA turns its exploration ambitions towards the Moon once again, the research and development of new technologies for lunar operations face the challenge of meeting the milestones of a fastpace schedule, reminiscent of the 1960's Apollo program. While the lunar samples returned by the Apollo and Luna missions have revealed much about the Moon, these priceless materials exist in too scarce quantities to be used for technology development and testing. The need for mineral materials chosen to simulate the characteristics of lunar regoliths is a pressing issue that is being addressed today through the collaboration of scientists, engineers and NASA program managers. The issue of reproducing the properties of lunar regolith for research and technology development purposes was addressed by the recently held 2005 Workshop on Lunar Regolith Simulant Materials at Marshall Space Flight Center. The recommendation of the workshop of establishing standard simulant materials to be used in lunar technology development and testing will be discussed here with an emphasis on space resource utilization. The variety of techniques and the complexity of functional interfaces make these simulant choices critical in space resource utilization

    In-Space Propulsion Engine Architecture Based on Sublimation of Planetary Resources: From Exploration Robots to NED Mitigation

    Get PDF
    Volatile solids occur naturally on most planetary bodies including the Moon, Mars, asteroids and comets. Examples of recent discoveries include water ice, frozen carbon dioxide and hydrocarbons. The ability to utilize readily available resources for in-space propulsion and for powering surface systems during a planetary mission will help minimize the overall cost and extend the op.erational life of a mission. The utilization of volatile solids to achieve these goals is attractive for its simplicity. We have investigated the potential of subliming in situ volatiles and silicate minerals to power propulsion engines for a wide range of in-space applications where environmental conditions are favorable. This paper addresses the' practicality of using planetary solid volatiles as a power source for propulsion and surface systems by presenting results of modeling involving thermodynamic and physical mechanics calculations, and laboratory testing to measure the thrust obtained from ,a volatile solid engine (VSE). Applications of a VSE for planetary exploration are discussed as a means for propulsion and for mechanical actuators and surface mobility platforms

    Multiphysics Modeling for Dimensional Analysis of a Self-Heated Molten Regolith Electrolysis Reactor for Oxygen and Metals Production on the Moon and Mars

    Get PDF
    The technology of direct electrolysis of molten lunar regolith to produce oxygen and molten metal alloys has progressed greatly in the last few years. The development of long-lasting inert anodes and cathode designs as well as techniques for the removal of molten products from the reactor has been demonstrated. The containment of chemically aggressive oxide and metal melts is very difficult at the operating temperatures ca 1600 C. Containing the molten oxides in a regolith shell can solve this technical issue and can be achieved by designing a self-heating reactor in which the electrolytic currents generate enough Joule heat to create a molten bath. In a first phase, a thermal analysis model was built to study the formation of a melt of lunar basaltic regolith irradiated by a focused solar beam This mode of heating was selected because it relies on radiative heat transfer, which is the dominant mode of transfer of energy in melts at 1600 C. Knowing and setting the Gaussian-type heat flux from the concentrated solar beam and the phase and temperature dependent thermal properties, the model predicts the dimensions and temperature profile of the melt. A validation of the model is presented in this paper through the experimental formation of a spherical cap melt realized by others. The Orbitec/PSI experimental setup uses an 3.6-cm diameter concentrated solar beam to create a hemispheric melt in a bed of lunar regolith simulant contained in a large pot. Upon cooling, the dimensions of the vitrified melt are measured to validate the thermal model. In a second phase, the model is augmented by multiphysics components to compute the passage of electrical currents between electrodes inserted in the molten regolith. The current through the melt generates Joule heating due to the high resistivity of the medium and this energy is transferred into the melt by conduction, convection and primarily by radiation. The model faces challenges in two major areas, the change of phase as temperature increases, and the dominance of radiative heat flux as heat transfer mechanism within the melt the change of phase concerns the regolith itself which is present in states ranging from a fine grain regolith with low thermal conductivity and low density to a vitrified melt with much higher thermal conductivity, and higher density. As the regolith is heated, it starts to soften around 1300 C the melt iS very viscous and evolving gas bubbles out in thick, lava-like fashion. By 1600 C the regolith is completely melted and the viscosity is low The second challenge resides in the proper modeling of the radiative heat flux requiring the addition of the computing-demanding radiative-heat-transfer function to the general heat transfer equation. The model Includes temperature-dependent properties (density, thermal conductivity, heat capacity, and viscosity, and absorption coefficients) and solves the radiative heat flux equation assuming gray (fine grains) and semi-transparent (melt) media and using an absorption coefficient spectral found in the literature for terrestrial minerals similar in composition to those of lunar regolith simulan

    Lunar Simulants, Analogues, and Standards: Needs and Realities for Mission Technologies Development

    Get PDF
    Integration of In-Situ Resource Utilization (ISRU) capabilities into missions present both challenges as well as benefits for future missions to the Moon and Mars. However, since ISRU systems and capabilities have not flown, mission planners have been hesitant to include ISRU capabilities in mission critical roles, thereby significantly reducing the benefits that ISRU can provide in mission mass and cost reductions. For ISRU systems to provide products and services to 'customers' such as life support, propulsion, and power systems, close development of requirements, hardware, and operations between ISRU and these systems are required. To address these development and incorporation challenges, NASA and csA initiated a series of analog field test demonstrations at sites in Hawaii. Two tests completed in November of 2008 and February of 2010 have demonstrate all the critical steps in operating ISRU systems on the lunar surface at relevant mission scales as well as integration with power and propulsion systems. The third field test planned for July 2012 will demonstrate that a mission to the lunar poles to locate and characterize ice and other volatiles is possible in a highly integrated mission with multiple space agencies. These analog field tests have shown that not only are ISRU systems feasible at relevant mission scales, that they can be successfully integrated into mission architectures

    The Status of Simulant Materials of Lunar Regolith: Requirements, Feasibility, and Recommendations

    Get PDF
    Introduction: As NASA turns its exploration ambitions towards the Moon once again, the research and development of new technologies for lunar operations face the challenge of meeting the milestones of a fast-pace schedule, reminiscent of the 1960 s Apollo program. While the lunar samples returned by the Apollo and Luna missions have revealed much about the Moon, these priceless materials exist in too scarce quantities to be used for technology development and testing. The need for mineral materials chosen to simulate the characteristics of lunar regoliths is a pressing issue that is being addressed today through the collaboration of scientists, engineers and NASA program managers. While the larger size fraction of the lunar regolith has been reproduced in several simulants in the past, little attention has been paid to the fines fraction, commonly refered to as lunar dust. As reported by McKay and Carrier, this fraction of the lunar regolith below 20 microns can represent up to 30% by mass of the total regolith. The issue of reproducing the properties of lunar regolith for research and technology development purposes was addressed by the recently held Workshop on Lunar Regolith Simulant Materials at Marshall Space Flight Center. Preliminary conclusions from the workshop and considerations concerning the feasibility of producing such materials will be presented here

    In-Space Propulsion Engine Architecture Based on Sublimation of Planetary Resources: From Exploration Robots to NEO Mitigation

    Get PDF
    This project, sponsored by the NASA Innovative Advanced Concepts examines how the systematic use of space resources such as frozen volatiles can create a new paradigm in surface power generation for deep space missions. The ubiquitous presence of ices of water, carbon dioxide and other compounds throughout the Solar System under conditions favorable for their sublimation will enable novel in-space propulsion and actuation concepts to become a reality and to address one of NASA's Grand Challenges of "All Access Mobility." Accessing such a resource in the far corners of our interplanetary neighborhood let us conceive exploration missions capable of refueling in the Jovian and Saturnian systems to achieve new goals or reach new destinations. The concept also has potential to apply in-situ propulsion to a comet or an asteroid to deflectits orbit slightly to avoid a future encounter with Earth

    Direct Electrolysis of Molten Lunar Regolith for the Production of Oxygen and Metals on the Moon

    Get PDF
    When considering the construction of a lunar base, the high cost (100,000akilogram)oftransportingmaterialstothesurfaceofthemoonisasignificantbarrier.Thereforein−situresourceutilizationwillbeakeycomponentofanylunarmission.Oxygengasisakeyresource,abundantonearthandabsentonthemoon.Ifoxygencouldbeproducedonthemoon,thisprovidesadualbenefit.Notonlydoesitnolongerneedtobetransportedtothesurfaceforbreathingpurposes;itcanalsobeusedasafueloxidizertosupporttransportationofcrewandothermaterialsmorecheaplybetweenthesurfaceofthemoon,andlowerearthorbit(approximately 100,000 a kilogram) of transporting materials to the surface of the moon is a significant barrier. Therefore in-situ resource utilization will be a key component of any lunar mission. Oxygen gas is a key resource, abundant on earth and absent on the moon. If oxygen could be produced on the moon, this provides a dual benefit. Not only does it no longer need to be transported to the surface for breathing purposes; it can also be used as a fuel oxidizer to support transportation of crew and other materials more cheaply between the surface of the moon, and lower earth orbit (approximately 20,000/kg). To this end a stable, robust (lightly manned) system is required to produce oxygen from lunar resources. Herein, we investigate the feasibility of producing oxygen, which makes up almost half of the weight of the moon by direct electrolysis of the molten lunar regolith thus achieving the generation of usable oxygen gas while producing primarily iron and silicon at the cathode from the tightly bound oxides. The silicate mixture (with compositions and mechanical properties corresponding to that of lunar regolith) is melted at temperatures near 1600 C. With an inert anode and suitable cathode, direct electrolysis (no supporting electrolyte) of the molten silicate is carried out, resulting in production of molten metallic products at the cathode and oxygen gas at the anode. The effect of anode material, sweep rate, and electrolyte composition on the electrochemical behavior was investigated and implications for scale-up are considered. The activity and stability of the candidate anode materials as well as the effect of the electrolyte composition were determined. Additionally, ex-situ capture and analysis of the anode gas to calculate the current efficiency under different voltages, currents and melt chemistries was carried out

    Paper Session III-A - Prototype Aerogel Insulation for Melamine-Foam Substitute: Critical Space Station Express Rack Technology

    Get PDF
    There is a current lack of environmentally acceptable foams to insulate Long-Duration Human Spaceflight Missions, including the experimental Express Rack for Space Station. A recent 60- day manned test in a sealed chamber at JSC was nearly aborted, because of persistently high formaldehyde concentrations in the chamber. Subsequent investigation showed that the source was melamine foam (used extensively for acoustic insulation). The thermal and acoustic potential for melamine-foam substitutes is evaluated for scale-up to a silica-based foam and aerogel, which is environmentally benign for long duration space flight. These features will be discussed in reference to an aerogel prototype to: 1) assemble material strength data for various formulated aerogels, both silica and organic carbon aerogels; 2) assemble the aerogel into panels of mylar/vacuum-encapsulated rigid boards which can be molded in various shapes and rigidities; and 3) describe a process for space applications for formaldehyde-free, long duration thermal and acoustic insulators

    Oxygen and Metals Processing on the Moon: Will Materials Science Change Our Future in Space?

    Get PDF
    As part of an In-Situ Resource Utilization infrastructure on the lunar surface, the production of oxygen and metals by various technologies is under development within NASA projects. Such an effort reflects the ambition to change paradigms in space exploration to enable human presence for the long-term. Sustaining such presence involves the acceptance of a new concept in space activities; crews must be able to generate some of their consumables from local resources. The balance between accepting early development risks and reducing long-term mission risks is at the core of the technology development approach. We will present an overview of the technologies involved and present their possible impact on the future of human expansion in the solar system
    • …
    corecore